Posts By :

Melisande Rouger

H2020-Web

QUIBIM made huge strides in
AI-powered diagnosis thanks to EU H2020

Taking part in the EU’s H2020 initiative translated into huge strides in disease detection and diagnosis by QUIBIM, by enabling the development of tools powered by artificial intelligence (AI) that allow to extract patterns from medical images and significantly improve human performance.

The program, which came to a term on June 30th, culminated in QUIBIM PrecisionⓇ significantly expanding its network of customers and collaborators and an improved international brand awareness.  More recently the Chest X-Ray Classification tool, another solution in the QUIBIM PrecisionⓇ suite, also received CE clearance.

We are very happy we’ve completed the program in time and line with all our objectives, allowing us to add one more stepping stone to the development of AI-boosted healthcare,” QUIBIM CEO Angel Alberich Bayarri said.

QUIBIM, a high-tech SME based in Valencia, Spain, received a €1.25M grant from the European Union’s Horizon 2020 research and innovation program in 2017, to help advance its machine learning and image processing algorithms to extract imaging biomarkers from images generated on CT, MRI, X-ray, US, DXA and PET scans.

With the EU’s support, the Spanish company could finalize the development, validation and automation of new imaging biomarkers in the areas of brain, lung and oncology, as well as achieve the integration of the new computing performance and data visualization frameworks for the QUIBIM platform.

Thanks to the automated analysis of imaging biomarkers, results are ready just within minutes with the best accuracy and reproducibility, through a medically certified, cost-effective and user-oriented solution, which is available to any physician using image-based diagnosis.

QUIBIM allows physicians to make more accurate diagnosis by providing additional information extracted from the analysis of acquired imaging studies. Our technology uses algorithms that scout the image and extracts features as imaging biomarkers that can be compared to normative information in our database, based on patterns that are not easily visible to the human eye. The algorithms combine both AI data-driven techniques and model-driven approaches. As such, our products help to reduce costs of medical testing and misdiagnosis, especially from specialists,” Alberich said.

QUIBIM actively started in 2015 as a spinoff company of La Fe Hospital in Valencia, to help specialists including radiologists and pathologists make the most of AI in their everyday practice, by providing a one-stop-shop solution using imaging biomarkers and powerful algorithms.

More than 60 hospitals worldwide are currently working with QUIBIM tools, most of which have received CE marks and/or are FDA pending. The company has notably developed the new teaching platform of the European School of Radiology and has supplied its QUIBIM Precision® image analysis platform to the AI Precision Health Institute at the University of Hawai‘i Cancer Center in Honolulu.

QUIBIM has received €3.5m funding ever since its creation and has offices in Spain and the U.S. The company forecasts to generate revenues above €36 million and 150 direct jobs by 2023.

European Commision Flag QUIBIM Project

 

2019-06-26

QUIBIM to develop platform in leading research project to fight pediatric cancer

QUIBIM is helping to advance knowledge of the most lethal pediatric tumors through EU-funded program PRIMAGE, which exploits precision information from medical imaging to establish tumor prognosis, and expected treatment response using radiomics, imaging biomarkers and artificial intelligence (AI).

Pediatric cancer is a rare disease, but treatment remains challenging. Improving knowledge is key to adequately plan therapy and boost survival, and the latest AI techniques have the potential to harness unprecedented information from medical images.

A few months ago, the European Commission funded the PRIMAGE (1) project with over €10M, to help identify the most efficient treatment and a tumor’s main characteristics without the need for biopsy, by using computational processing of medical images on the cloud.

The PRIMAGE consortium will create a bank of images obtained through AI, using an open cloud-based platform to support decision-making in the clinical management of Neuroblastoma (NB), the most frequent solid cancer of early childhood, and Diffuse Intrinsic Pontine Glioma (DIPG), the leading cause of brain tumor-related death in children. The PRIMAGE platform will implement the latest advancement of in-silico imaging biomarkers and modeling of tumor growth towards a personalized diagnosis, prognosis and therapies follow-up.
The project involves 16 European partners, including internationally recognized institutions, and four leading industrial partners, including Spanish biotechnology company QUIBIM, all working under the aegis of the Imaging Biomedical Research Group (GIBI230) based in La Fe Hospital, Valencia.

181220_IISLAFE PRIMAGE kick offprimage-logo-transparent
Sharing high-end knowledge of AI tools

QUIBIM is responsible for the central task of developing the PRIMAGE platform’s architecture, adaptation and design. The company recently obtained CE mark for its Chest X-Ray Classification AI-Tool and its imaging biomarker analysis algorithms, zero footprint DICOM viewer and platform within the QUIBIM Precision platform.

QUIBIM researchers are now bringing their expertise in medical image post processing and management to PRIMAGE, by passing on their knowledge of clinical trials design and validation, imaging biomarkers extraction and validation, radiomics, data clustering and visualization, and development of AI-fueled tools, such as organ segmentation models.
“Much work remains to be done to improve our knowledge of pediatric brain cancer. NB and DIPG have a complex therapeutic approach and we need proper tools to improve survival. Extracting quantitative information from medical images with AI can help visualize tumor growth with extreme precision, and help to tailor therapy to each individual patient,” Ángel Alberich-Bayarri  said.

QUIBIM’s input will also help to define the methodologies and standards to be used in the different development areas, to facilitate interoperability between the platform ́s modules and for future interoperability with their cloud-based platforms for functionality add-ons.

Transferrable knowledge to other cancers

Cancer has a very low incidence among children and experts estimate that 500,000 EU citizens will be pediatric cancer survivors by 2020. Nonetheless, cancer remains the first cause of non-traumatic death among children.

Neuroblastoma is the most common extracraneal tumor in children, representing 8-10% of all pediatric cancers. In Europe, 35,000 new cases are diagnosed each year, 1,000 in Spain alone.

Diffuse Intrinsic Pontine Glioma is a very rare disease in childhood and is associated with low survival (10%), despite many existing treatments and on-going research. Treatment is not curative, only palliative, i.e. radiotherapy to improve the patient’s life. 16 new cases are diagnosed each year in Spain, accounting for 2.5% of oncological pediatric patients and 13% of pediatric tumors of the central nervous system.

Because of the peculiarities of computational approximation in these two types of tumors that are proper to childhood, investigation done in that area will also be applicable to other types of tumors. Because it will gather considerable scientific effort, PRIMAGE should also help advance research on other types of cancer.
(1): PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers (PRIMAGE)

Breast cancer QUIBIM

QUIBIM uses AI to boost
breast cancer research

As the first ESMO Breast Cancer Congress unfolded 2-4 May in Berlin, Germany, QUIBIM CEO highlighted the role played by artificial intelligence (AI) in breast cancer research.

The European Society of Medical Oncology focused on the progress in treatment options and improved outcomes for breast cancer (BC) patients during its first meeting dedicated to the topic (¹).

One of the key messages of the conference was that therapeutic innovations should go hand in hand with a multidisciplinary, fully integrated approach to patient care, a scenario in which AI can increasingly help make a difference, according to QUIBIM CEO & founder Angel Alberich-Bayarri.

Breast cancer_QUIBIM

QUIBIM breast cancer structured report

AI, and in particular image quantification, can help significantly advance knowledge of this multi-faceted disease, by enabling earlier and better detection,” he said.

From the Pacific to the rest of the world

Recently QUIBIM partnered with the AI Precision Health Institute (AI-PHI) at the University of Hawai‘i Cancer Center in Honolulu, to manage, store and quantitatively analyze medical images and algorithms in breast cancer research.

Using the QUIBIM Precision® image analysis platform, AI-PHI researchers will create large scale imaging repositories with automated extraction of imaging biomarkers to characterize patients’ status. The solution will first be used as the central repository for the mammography studies conducted in the Pacific and will include mammograms from over 5 million women.

The University of Hawai‘i Cancer Center is one of 69 NCI designated cancer centers in the United States and the only one in Hawai‘i and all of the Pacific Islands. It is the only institution that uses AI to analyze medical images to assess health and predict risk of disease in the region.

The project is expected to grow exponentially as its principal investigator Dr. John Shepherd is keen on inviting selected reference centers all across the world to join the network. “It is a very interesting and pioneering work for QUIBIM, and our first big cooperation in the breast cancer setting,” Alberich said.

Seamless integration into clinical workflow

The QUIBIM Precision® image analysis platform enables to incorporate AI algorithms regardless of the institution where it is deployed, to facilitate integration into workflow.

“Researchers can program their own algorithm and code, and add it as a plugin to the platform. This feature, combined with the advanced storage and multi-user annotation capabilities of the platform, allows for a wide adoption within research groups and institutions working with AI. Time for deployment of algorithms in the real world is shortened by 25%, since you have the whole AI pipeline in just one place,” he explained.

The solution, which includes not only quantitative image analysis but also structured reporting capabilities, can be integrated into the radiology workflow and add value to this service. It can for instance be used to integrate AI algorithms to detect cancer without the need of radiologists in a first-read.

Earlier this year the platform received CE Mark certification as class IIa Medical Device, including the imaging biomarker analysis algorithms, the zero footprint DICOM viewer and the platform hosting these components and medical imaging data. The platform is now available for commercial deployment in European hospitals and diagnostic imaging centers.

In addition to the platform, the certification includes 15 algorithms in the five key areas of interest of the company: oncology, neurology, musculoskeletal, liver and lung

Also included in the CE Mark certification is the DataMiner, which was designed in collaboration with the team of Prof. Daniel Keim from Konstanz University to provide advanced visual analytics of large databases of patients for population health management and scientific exploitation. The DICOM web viewer that enables the user to visualize the images of a sequence, draw ROIs or apply filters is also included in the certification.

QUIBIM applies machine learning to develop tools for imaging data quantification, to accelerate image reconstruction, segmentation, detection and data mining. Beyond the breast, the company has created AI algorithms to help detect changes produced by brain and prostate cancer, but also other diseases in the hematological scenario such as non-Hodgkin’s Lymphoma.

(¹): https://www.esmo.org/Conferences/ESMO-Breast-Cancer-2019?utm_campaign=PRESS%20-%20Breast&utm_source=hs_email&utm_medium=email&utm_content=72075686&_hsenc=p2ANqtz-9pH5mSHFhwzXnTGp6oSizohrD75uXccBxo1woBVGUFhJl3K5y_p4Ms4Hoa3LcwRJ_KvILSmOWhsrZxTZSWLwumEXOnOw&_hsmi=72075686

D3YI165WAAUCunr

Comprehensive solutions will boost AI use in medical imaging

Integrating artificial intelligence (AI) into the radiologist’s workflow is still challenging, but all-inclusive solutions can help unfold algorithms’ power, QUIBIM CEO and founder Angel Alberich-Bayarri explained during the ESR AI Premium Event, which was hosted by the European Society of Radiology (ESR) and the European School of Radiology (ESOR) earlier this month in Barcelona.

Medical imaging AI is a bubbling field but very few solutions are used in daily practice today, Alberich told delegates during the busy meeting, which gathered top researchers in medical imaging AI and thousands of online attendees. “We have a lot of research, AI algorithms and start-ups, but few are really embedded in the radiology workflow,” he said.

A main obstacle to AI integration is a lack of knowledge of utilities. For most imaging biomarkers, the real application relationship with clinical endpoints on a large scale – diagnostic, prognostic and treatment response – remains unknown. Clinicians don’t want to integrate biomarkers that have not been validated, but if they don’t gather information massively and try to understand how biomarkers relate to the disease, they will never help advance healthcare, Alberich explained.

“We have to change our minds and not wait for biomarkers to be validated before they can be extracted on a daily basis. Similarly to genomics: we have to do sequencing and study diseases to detect unknown mutations by ourselves,” he said.

The lack of annotated data is another challenge. Radiology reports are not filled with a focus on data annotation, but on descriptive language that needs to be processed by natural language processing (NLP). However they would be an ideal source of knowledge, and not just for the clinicians.

One-stop-shop platform using biomarkers

QUIBIM was created in 2015 as a spinoff company of La Fe Hospital in Valencia, Spain, to help radiologists make the most of AI in their everyday practice, by providing a one-stop-shop solution using imaging biomarkers and powerful algorithms.

“Offering a single solution embedded in workflows is key because radiologists will not buy all start-up micro developments but the best platform,” he said.

The very name of the company is an acronym and stands for Quantitative Imaging Biomarkers in Medicine. Imaging biomarkers enable to measure everything happening in the body to extract parameters that can provide information on the tissue of the lesion type beyond classification. Fuelled by AI, these biomarkers can deliver unprecedented information on disease.

“Many different imaging pipelines have dramatically changed thanks to AI integration. For example, we used to have lots of problems doing segmentation with traditional algorithms in tissues and organs such as the liver in MRI. Thanks to AI, segmentation has improved and with it our knowledge of liver disease,” he said.

A prerequisite is to integrate data mining solutions to make radiomics easy to everyone. This means it must be embedded in the same platform, as current solutions are not able to treat this amount of quantitative data from patient cohorts. “A lot of parameters are quantified in daily routine, but there is still no way to store and process them massively. Our current PACS systems are simply not prepared for quantitative data,” Alberich said.

There is a lot of sense in working within a structured report (SR), as it enables to annotate data that will further advance research. Prospectively the studies can be very well annotated if AI imaging biomarkers are integrated in the fields of the SR. Working with the SR would tremendously facilitate communication between clinicians and with patients.

“We are building the radiology report of the future, only we’re doing it now. Patients do not understand radiology reports, so we have to change the way we communicate. We are very much aligned with the standardized way blood test findings are reported, everyone understands whether findings are in or out of range and if there is any abnormality. We have to be more intuitive in our communication,” Alberich said.

QUIBIM is developing quantitative, one-page long structured reports that are actionable, quantitative and automated. The reports are designed with KOLs in each speciality, to make sure they reflect the reality of clinical practice.

Clinical input and powerful technology

Cooperation with clinicians is a key axis for the company, which uses a stepwise model to create new solutions with clinicians in the loop.

The company develops highly performing AI algorithms using unprecedented network architectures, for instance, multiscale convolutional networks ensemble in brain MR, 2.5D network in liver MR and referee network in chest x-ray, and hundreds of thousands of annotated images that have been acquired through cooperation with researchers and university hospitals.

QUIBIM has launched algorithms in different product areas to provide a head to toe imaging biomarker solution; in neuro for Alzheimer, ALS, MS, stroke and cerebrovascular events; in MSK for articulations; in chest for screening, COPD and fibrosis; and in breast for screening. More products will soon be released that will focus on other body areas.

More than 60 hospitals worldwide currently use QUIBIM tools, most of which have received CE marks and/or are FDA pending. The company has notably developed the new ESOR teaching platform and has supplied its QUIBIM Precision® image analysis platform to the AI Precision Health Institute at the University of Hawai‘i Cancer Center in Honolulu. QUIBIM has received €3.5m funding ever since its creation and has offices in Spain and the U.S.