Automatic localization and identification of vertebrae in spine CT scans by combining Deep Learning with morphological image processing techniques

Ana Jiménez-Pastor¹, Angel Alberich-Bayarri¹,², Belén Fos-Guarinos¹, Fabio García-Castro¹, Luis Martí-Bonmatí¹,³

¹ QUIBIM S.L., Valencia, Spain
² La Fe Health Research Institute, Valencia, Spain
³ La Fe Radiology Department, Valencia, Spain

anajimenez@quibim.com
Outline

- Introduction
- Purpose
- Materials
- Methods
 - Spine Centerline Detection
 - Vertebra Centroid Localization
- Results
- Conclusions
The correct **detection** and **identification** of vertebrae is essential for correct **diagnosis** and pathologies’ **follow up**
Nowadays, this localization is done **manually** or by landmarks by the specialists, **hindering** their workflow.
Main challenges on the automation of vertebrae localization in CT scans

Arbitrary field-of-view

Vertebrae similarity along the spine

Image artifacts due to metal implants
Purpose

Develop an algorithm for the **automatic** vertebrae localization and identification on arbitrary field-of-view scans

- Pipelines for the **automatic characterization** of vertebrae bone microarchitecture
- Help radiologists to perform diagnosis in a **shorter period of time**
Dataset

230 CT scans retrospectively collected:
- Arbitrary field-of-view
- Healthy and pathological cases
Methodology

Spine localization

Vertebral localization

Morphological image processing techniques

Deep Learning techniques
Methods

Methodology

Spine localization

Morphological image processing techniques

Ana Jiménez-Pastor
Methods

Spine centerline detection

Original Image → Thresholding ≥ 250HU → Dilation → NOT operation → Background removal → Small objects removal
Methods

Spine centerline detection

Spinal cannal detection → Translation to spine centerline → Outlier detection and curve fitting
Methodology

Vertebral localization

Deep Learning techniques

GIBI 2

Ana Jiménez-Pastor
Convolutional Neural Networks - Transfer learning
Convolutional Neural Networks - Transfer learning

SPECIFIC CLASSIFIER

FEATURE EXTRACTION

CLASSIFICATION
Vertebra centroid localization
Region classifier dataset

<table>
<thead>
<tr>
<th>Region</th>
<th>Example Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoracic Superior</td>
<td> </td>
</tr>
<tr>
<td>Thoracic Inferior</td>
<td> </td>
</tr>
<tr>
<td>Lumbar</td>
<td> </td>
</tr>
<tr>
<td>Sacrum</td>
<td> </td>
</tr>
</tbody>
</table>

Ana Jiménez-Pastor
Vertebra centroid localization

Spine centerline detection
Vertebra – Non vertebra classifier dataset
Vertebra centroid localization

Vertebra position → Centroid calculation → Vertebra identification
Regions and spine centerline detection

Thoracic Superior
Thoracic Inferior
Lumbar
Sacrum
Vertebra detection
Centroid calculation
Vertebra identification
Localization error (mm): Distance between the predicted vertebra centroid and the real one

- **X < 2 mm**
- **Y < 8 mm**
- **Z < 3.5 mm**
Identification rate (%): Percentage of correctly identified vertebrae

> 87%
DECISION FORESTS (ECR 2017)

<table>
<thead>
<tr>
<th>REGION</th>
<th>MEDIAN</th>
<th>MEAN</th>
<th>STD</th>
<th>ID. RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>10.335</td>
<td>13.734</td>
<td>10.318</td>
<td>77.99%</td>
</tr>
<tr>
<td>Thoracic</td>
<td>10.172</td>
<td>13.045</td>
<td>9.478</td>
<td>79.56%</td>
</tr>
<tr>
<td>Lumbar</td>
<td>10.710</td>
<td>15.112</td>
<td>11.716</td>
<td>74.84%</td>
</tr>
</tbody>
</table>

CONVOLUTIONAL NEURAL NETWORKS

<table>
<thead>
<tr>
<th>REGION</th>
<th>MEDIAN</th>
<th>MEAN</th>
<th>STD</th>
<th>ID. RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>4.913</td>
<td>7.982</td>
<td>8.734</td>
<td>90.43%</td>
</tr>
<tr>
<td>Thoracic</td>
<td>4.123</td>
<td>7.368</td>
<td>8.695</td>
<td>89.20%</td>
</tr>
<tr>
<td>Lumbar</td>
<td>6.420</td>
<td>9.210</td>
<td>8.696</td>
<td>92.90%</td>
</tr>
</tbody>
</table>

Ana Jiménez-Pastor
Conclusions

- A methodology has been developed which provides the **lowest error** on the automatic vertebrae detection and identification on CT scans.

- The localization can be addressed on **arbitrary field-of-view** scans.

- This **improves** the **radiological workflow** in spine evaluation through CT and allows the creation of **automatic pipelines** for the calculation of vertebrae **bone microarchitecture** characteristics.
Acknowledgements

GIBI230

POST-DOC
Alejandro Torreño, PhD - Technology Development
Alejandro Rodríguez, PhD - Image Analysis Engineer

PhD STUDENTS
Amadeo Ten - Image Analysis Engineer
Sara Carratalá - CNS Analysis

CLINICAL TRIALS AND PREBI
Sandra Pérez - Data Manager
Juan Ramón Terrén - Data Manager
Rebeca Maldonado - Technician & PREBI

ADMINISTRATION
Ana Penadés - Economic & Financial Manager

IMAGE ANALYSIS SCIENTISTS
Fabio García Castro - Chief Image Analysis Scientist
Belén Fos Guarinos - Image Analysis Scientist
Ana María Jiménez Pastor - Image Analysis Scientist
Rafael López González - Image Analysis Scientist

DEVELOPMENT
Rafael Hernández Navarro - Chief Technology Officer
Alejandro Mañas García - Full Stack Senior Developer
Eduardo Camacho Ramos - Front-End Developer

CLINICAL TRIALS
Irene Mayorga Ruíz - Clinical Trials Coordinator
Raúl Yébana Huertas - Image Analysis Technician

MARKETING AND COMMUNICATION
Katherine Wilisch Ramírez - Marketing Manager

MANAGEMENT
Isabel Montero Valle – Team Coordinator
Encarna Sánchez Bernabé - Chief Operating Officer
Daniel Iordanov López - Assistant to Business Development

Ángel Alberich Bayarri, PhD.
GIBI Scientific-Technical Director
QUIBIM CEO & Founder

Luis Martí Bonmatí MD, PhD.
GIBI Principal Investigator
QUIBIM Founder
Automatic localization and identification of vertebrae in spine CT scans by combining Deep Learning with morphological image processing techniques

Ana Jiménez-Pastor¹, Angel Alberich-Bayarri¹,², Belén Fos-Guarinos¹, Fabio García-Castro¹, Luis Martí-Bonmatí¹,³

¹ QUIBIM S.L., Valencia, Spain
² La Fe Health Research Institute, Valencia, Spain
³ La Fe Radiology Department, Valencia, Spain

anajimenez@quibim.com